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ABSTRACT
This paper contains the written version of a series of lectures presented
by the author at the American Mathematical Society Summer Institute on Non-
linear Functional Analysis and Nonlinear Differential Equations. These
lectures are an introduction to minimax techniques for finding critical points
of functionals, especially functicnals possessing symmetries. Applications
are made to semilinear elliptic partial differential equations and Hamiltonian

systems of ordinary differential egquations.
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*: . This paper contains an introduction to some of the ideas and methods used
X
in finding critical points of real valued functiocnals by minimax arguments.
g The emphasis is on obtaining multiple critical points of functionals
e, '
9}‘ possessing symmetries. Applications are given to semilinear elliptic boundary
+
« value problems and Hamiltonian systems of ordinary differential equations.
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, MINIMAX METHODS FOR INDEFINITE PUNCTIONALS
- Paul H. Rabinowitz
“; ) §1. Introduction
3‘ During the past few years, there has been a considerable amount of research on
é ) obtaining critical points of indefinite functionals by means of minimax methods. The goal
of these lectures is to describe some of the ideas and methods that are used in this field
1; especially for probless involving sysmetries. In the presence of symmetries one generally
o hopes to obtain multiple critical points.

To begin, by a functional we simply mean a mapping I : B+ R where E is a real
Banach space. The functional I will generally be assumed to be continuously
B}

differentiable, i.e¢. T € c‘(l,l). The Prechet derivative of I at u € E acting on

PR

X ¢ € is denoted by I'(u)¢. A critical point of I is a point u € B at which
3
I'(u) = 0, i.e. I'(u)¢ =0 for all ¢ €EE. The value of I at a critical point is

L. called a critical wvalue of I. In applications to differential equations, critical points
3

2 ) of I correspond to weak solutions of the equation. Thus critical point theory serves as
R a useful tool for obtaining existence results for differential equations.

b

! What are indefinite functionals? We illustrate with several examples:

i Example 1.1 : Boundary value problems for semilinear elliptic partial differential

¢

“,‘ squations

“ Consider the equation

-8y = p(x,u) , xeqQ ;
) (1.2)
o u=20 ’ x & 30
Q where Q 1is a bounded domain in ¥ with a smooth boundary. Under appropriate growth and
- mild smoothness conditions on p, solutions of (1.2) are critical points of
v (1.3) 1w = [oF 192 - p(x,u))ax
5
£
Ky
Sponsored by the United States Army under Contract No. DAAG29-80-C-0041 and by

. p the National Science Poundation under Grant No. MCS-8110556. Reproduction in
v whole or in part is permitted for any purpose of the U.S. Government.
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;n on B~ I 20). 1 (1.3), P(x.£) 1is the primative of p(x,£), i.e.
e,
Px,€) = [§ plxitiae .
' s+t n+2 .
LN Yor an interesting class of P's, e.g. P(x,§) = |€] where 1 <8 < =5 4if n>2
;‘,. and s ¢e® if n =2, I(u) is not bounded from above or below on E even modulo
s )
b ‘\“ 4
o subspaces of finite dimension or codimension. Thus I is an indefinite functional.
Example 1.4 : Periodic solutions of second order Hamiltonian systems
?54 Consider the system of ordinary differential equations:
2
i, (1.5) g+Vig) =0
.')X; { q
il 2

vhere qe ¥, vec'(a",x), and § 9—3. More generally, V could depend on t in a
dat
time periodic fashion. A T periodic solution of (1.5) is a critical point of

(1.6) Ilq) = I}'(% 1912 - v(q)at

for q 4in an appropriate Hilbert space of T periodic functions. Once again for a large

class of potential energy terms V, I(q) is an indefinite functional. :

%
:,J : Example 1.7 : Periodic solutions of general Mamiltonian systems ‘
9 " []

% A general (unforced) Hamiltonian system has the form

s

. 0 -ia
(1.8) z=JH(2) , J=( ) !

21 a4 o0
A
D2 where z = (p,q), p, g€ K, and H e ¢ (", ). One of the important properties of such
15
I systems is that if z(t) is a solution of (1.8), then the "energy"” H(z(t)) is
l.

independent of t. Two questions that have been studied for (1.8) are: (a) the existence

'. g of periodic solutions having a prescribed energy, e.g. H(z(t)) = 1; (b) the existence of
‘,‘f periodic solutions having a prescribed period T. For (a), the period is a priori unknown
i
"?52‘{, 80 it is convenient to make a change of time scale so that the period becomes 2% and
(1.8) becomes
:}3 (1.9) z=2JH(2)
: -,‘,
Yol where we now seek A # 0 and a 27 periodic function =z(t) such that H(z(t)) = 1. The
&' variational formulation of this problem is: Find critical points of the so-called action
integral
.j"'f bl q
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(1.10) Az) = [3¥ peq at

subject to the constraint

. 1 r2w

(1.11) 7 Jo H(zlae = 1

‘\4 and s (and H) in an appropriate class of functions. The constraint (1.11) leads to a
+ ‘_: .

A Lagrangs multiplier in the corresponding RBuler equation which is the unknown ) in

(1.9). Moreover if 1, = satisfy (1.9),

(1.12) R(z(t)) & constant
, o (1.11) isplies s(t) lies on 8- '(1).
¢ 1 Problem (b) corresponds to critical points of
R (1.13) I(s) = Az) = A [3¥ n(slae .
. Once again it is not 4iffticult to see that the functionals (1.13) and (1.10) subject to
f@_ (1.11) are indefinite for a large class of Hamiltonians.
| Bxample 1.14 : Time periodic solutions of a forced semilinear wave equatiom
e Consider
52" - Uy —u. *+ £it,x,0) =0 0<x<2
b (1.18)
RS u(0,t) = 0 = u(e,t)
. ' where f is T periodic in t and we seek a solution which is alsc T periodic in ¢t.
';§ The corresponding functional is
152; (1.16) 2w = [T [b17 02 - ud) - pix,t,0))anae

o wvhich is indefinite.
Minimax methods will be used to treat such indefinite functionals. These methods

characterise a critical value, ¢, of I as a minimax of I over an appropriate class of

5 sets K:
— (1.17) c = inf sup I(u) .
. pek ues
Eh
*J As a simple example of such a result, consider the so-called Mountain Pass Theorem:
D Theores 1.18 (1] : let E be a real Banach space and suppose I & c'(l.l) satisfies the
LY Palais-Smale condition. Purther assume I(0) = 0 and I satisfies:
ij, . (14) ‘There are constants p,a > 0 such that II“O > a.
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(I5) There exists e € t\l° such that I(e) < O.

lat

r={gec(lo,1),8) | g(0) = 0, g(1) = e} .
Then
(1.19) c = inf max I(u)

gel veg([0,1])
is a critical value of I with ¢ > a.
q‘ In the theorem, Bp denotes the open ball of radius p about 0 in E and 3Bp
denotes its boundary. We will digress briefly to sketch the proof of the Mountain Pass
Theorem because it illustrates some of the basic ideas used in minimax arguments. First
the Palais-Smale condition, (PS), must be explained. This condition states that any
A sequence (u,) © ¥ such that |I(u,)| is bounded and 1I'(u,) + 0 has a convergent
» subsequence. Thus (PS) is a kind of compactness condition. E.g. if
K, & {u e E{I(u) = c and I'(u) = 0}, then (PS) implies that K. is compact. It further
implies a certain mzémw that is required to prove the following (simplest version of
% the)
Deformation Theorem: If I € C'(E,R) and satisfies (PS), € >0, and c is not a

critical value of I, then there is an € € (0,6) and n € C((0,1] x E,E) such that

iy © n(t,u) =u if I(w ¢ [c-¢,c+e]

X
s”} 2° n(1A ) A,

' vhere A, = {u e E | I(u) < s},
;‘%’ We do not have time to go into the details of the proof here. However two quick
B

remarks suffice to illustrate the ideas involved in the simplest settingof E =R’ and I

e c3, Consider the ordinary differential equation:

(1.20) - - L)

with initial condition ¢$(0ju) = u. Then

g; I(ptru)) = = [T (W(tsud) |2 <0

80 except at serces of I', I strictly decreases along orbits of (1.20). This observation

together with (PS) plays a key role in establishing 2° of the Deformation Theorem.

) -4-

N s e e S T i T T S 0 SRR
00, c, < . e : e

AL \
AR > \\s'-\

* i



!‘é{fﬁ

o
PR
e

e v g ke

IR

¥,

< g o

B

by

s A T

‘ A

TN
‘%_‘\ ASARLY,

e e w

AAAE

L ST RIE, L i R S

e N A o I ) BLLAL RSN A 24 2 £ A0 LD S A R |

Actually to get 2°, we must replace the right hand side of (1.20) by a rescaled version of
itself for otherwise the solution may not exist for the full interval t € (0,1]. Moreover
to prove 1°, we must also multiply the right hand side of (1.20) by an appropriate
localisation factor. See e.g. [2) or (3] for a complete proof.

Proof of the Mountain Pass Theorem: Observe first that each curve g({0,1]) crosses 9B
and therefore

nax I(u) > a
g([o0,1])

by (I4). Hence c > a by (1.19). Suppose that c is not a critical value of I.
Setting €= f and invoking the Deformation Theorem, we find ¢ € (0,?) and

nec(lo,1] x B,B) such that

(1.21) n(bhm) € Aoe.
Choose g €T such that
(1.22) nax I(u) € c+e

ueg([0,1])
and consider n(1,g(t)). Note that n(1,g(0)) = n(1,0) = 0 via 1° of the Deformation
Theorem since I(0) = 0 < 3 < c-¢. Similarly n(1,9(1)) = n(1,e) = ¢ via (I,) and the
above arqument. Therefore n{1,g(t)) € T. But then (1.21) - (1.22) imply

(1.23) sax
uen(1,g9((0,1]))

I(u) € c-¢ ,

contrary to the definition of c. Thus c¢ is a critical value of I and the proof is
complete.

As was mentioned earlier we will be interested mainly in symmetric functionals in
these lectures. A symmetric functional is one which is invariant under a group G of
mappings of B into X, i.e. I(u) = I(gu) for all g e G. Some examples will be given
next.

Example 1.24: In Example 1.1, suppose P(x,f) is even in £. Choosing G =

{14,~-14} ~ %, where id denotes the identity map in E, I as defined in (1.3) is

invariant under G.

e f$' K2R S QNN
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Example 1.25: An appropriate space to work with in Example 1.7 is E = (J/‘l '2(8'))2". the
Hilbert space of 2n-tuples of 2% periodic functions which are square integrable and
possess a square integrable derivative of order %. (See e.g. [4) for a more precise
definition.) Let G = {gy | 6 € [0,2v) and ggz(t) = z(t+0) for all =z € E}. Thus
G~ wio0,2%) ~ s' and I as defined in (1.13) is invariant under G.
Remark 1.26. Por groups G as ahove, the fixed point set of G, Fix G is defined as
(1.27) . Fix G=Z {ueE | qu=~u for all geG} .
Thus in Example 1.24, Fix G = {0} while in Example 1.25, Fix G is the set of constant
functions in E which in turn can be identified with R2". Fix G plays an important role
in problems with symmetrieas. Whenever Fix G is nontrivial, care must be taken to avoid
it; otherwise there are difficulties in trying to exploit the symmetries to obtain
multiplicity results.
Example 1.28: Let I and E be as in Example 1.3 where § now denotes the unit ball in
l?. Using polar coordinates, we gsee 1 1is invariant under
G = {gT | Te [(0,2v) and qt(n(t,e)) = u(r,8+1) for all u e E} ~ s' .

Bere Pix G consists of those u € £ which are independent of 0, i.e. Pix G consists
of the set of radial functions. To date due to the presence of this large Fix G, no one
has successfully used minimax methods to tackle this problem.

The existence of symmetries can be useful in obtaining multiple critical points of a
functional. The first result of this type ia due to Ljusternik [5).
Theorem 1.29: Suppose f € C'(®®,R) and f is even. Then flsn_1 has at least n
distinct pairs of critical points.

A more recent result is a symmetric version of the Mountain Pass Theorea.
Theorem 1.30 [6]: Let E be a real Banach space and I € c‘(!,n) satisfying (PS).
Suppose further I is even, I(0) = 0, I satisfies (I,), and
(15) for all finite dimensional Ec E, there is an R = R(E) such that I < 0 on

B .
R(E)

Then I has an unbounded sequence of critical values.
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In the remainder of these lectures we will describe some of the ingredients that go
into the proofs of such multiplicity statements as well as some applications to
differential equations such as (1.2) and (1.8).

§2. Index theories and somes multiplicity results

In order to exploit symmetries to obtain multiple critical points of a functional,
several preliminaries are required. First we need a way to measure the size of symmetric
sets. An index theory is an appropriate toal for this purpose and is useful in dealing
with symmetric sets in other ways. FPor many situations, especially unconstrained problems,
tntouoct.ion theorems are needed to get estimates. Classes of sets with respect to which
to minimax the functional must also be found. The choice of such classes has been a very
ad hoc process. Lastly a symmetric version of the Deformation Theorem is needed. We will
study these matters next, mainly in a 3, setting.

What is an index theory? Probably the simplest one is obtained with the aid of the
notion of genus introduced by Krasnoselski [7]. The equivalent form of this notion
described here is due to Coffman [8]. Let E be a real Banach space and let [E denote
the family of sets A < E\{0} such that A 1is closed in E and symmetric with respect
to 0, f.e. X€A implies ~x €A. Por A €E the genus of A, denoted by YI(A)
equals n 1if there is an 04 map ¢ € C(A,R"\{0}) and n is the smallest integer with
this property. If there does not exist a finite such n, set Y(A) =, Also define
Y(§) = 0. Some simple exawples are in order.

Example 2.1: Suppose A = BU(-B) where B n (-B) = ¢ and B is closed. ‘Then

Y(A) = 1 gince if ¢(x) = 1 for x € B and ¢(x) = -1 for x € (-B),¢ is odd and
belongs to C(A,R {0}).

Example 2.2: If n » 1, A is homeoworphic to S" by an odd mapping, Y(A) > 1 for
otherwise there exists an odd ¢ & C(A,R\{0}). Choose x @€ A such that ¢(x) > 0, Then
¢(-x) < 0 and by the Intermediate Value Theorem, ¢ must vanish somewhere along any path
joining x and =-x, a contradiction.

The next result contains the main properties of genus. Below for Ac E, NG(A) H

{(xex | Ix=A? < 8§}, i.e. Ny(A) is a uniform §-neighborhood of A.

-7




~

5 W,

Z)
s %

R
'4.’,-, 3

b
LA

i,
Pk

o

g
EXAN
PN
.A .-‘.

P

.
o’

w

A
L4

N
3O
3

Proposition 2.3: Let A,R € f. Then
1° wormaliszation: If x ¥ 0, Y({x} y {=y}) = 1.

2° mapping property: If there exists an odd mapping f € C(A,B), then
Y(A) € y(B).
3° subadditivity: Y(A U B) < Y(A) + Y(B).
4° continui roperty: If A is compact, Y(A) < » and there isa § > 0
such that vY(A) = Y(IG(A)).

Proof: 1° js obvious. Por 2°, the result is trivial if Y(B) = ». Thus suppose
Y(B) = n < ». Suppose there exists ¢ € C(B,®™\{0}) with ¢ odd. Therefore ¢ * f 1is
044 and belongs to C(A,K\{0}). Consequently Y(A) < n = Y(B). To prove 3°, suppose
Y(A) = m, Y(B) = n, and both are finite (since again, if not, the result is trivial).
Therefore there are odd functions ¢ € C(A,K"\{0}), ¥ € C(A,®°\{0}). Extenda ¢, ¥
respectively to ; e c(x, @M, ; e c(z, ). Replacing ;, ; by their odd parts, we can
asgume ;o ; are odd. Set f = '(;.;)- Then £ is odd and belongs to
CciA v B, """\ {0}). Consequently Y(A UB) < mén = Y(A) + y(B). Lastly to verity 4°, for
x @A, let r(x) = ;— Ixl = r(-x) and B (y.)(x) = {ueE | lu-xl < r(x)}. Set T, =
lﬂx,(x) U Bryx){=x) and observe that Ac xLe,A T,+ By compactness, finitely many T"r
cover A. Since Y(T ) =1, Y(A) <= by 3°  Applying 2% with £ = 14, Y(A) <
Y(IG(A)). Suppose y(:) =n. Choose ¢ € C(A,R™\(0}) with ¢ odd and extend ¢ to
; e C(!,ln) as in 3° with ; odd. Since A 1is compact, ; ¥ 0 on “6(” for some
$§ > 0. Therefore Y(Ng(A)) € n = v(A).
Remark 2.4: For arguments given later it is useful to cbserve that if Y(B) < =, then
Y(K;) > Y(A) - y(B). Indeed AC A\B U B %0 this follows from 2° - 3° of Proposition
2.3, Also observe that if Y(A) > 1, the definition of genus implies A contains
infinitely many distinct pairs of points.

If B is infinite dimensional, the following result shows how to obtain sets of
arbitrary genus in E.

Proposition 2.5: If A €f, @ is a bounded neighborhood of 0 in lk, and there exists

a homeomorphism h € C(A,91) with h odd, then Y(A) = k.
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Proof: Clearly Y(A) € k. If Y(A) < k, there exists an odd map ¢ € c(a,ri\{0})
where j ¢ k. The map ¢ °* n! is then odd and belongs to C(aﬂ,lj\{O}). But the
existence of such a map is contrary to the Borsuk-Ulam Theorem {3). Therefore
Y(A) = k.

The next proposition is a simple example of an intersection theorem.
Proposition 2.6: If Y(A) >k and V is a subspace of E of codimension k, then VI
ArY.
Proof: Suppose VN A =0, Let P denote the projector of E onto V‘L whexre
vevi=E Then P is 0dd ana P € C(A,VN\{0}). By 2° of Proposition 2.3,
Y(A) € Y(PA). Projecting PA radially onto 351 a vt and using 2° of Proposition 2.3 and
Proposition 2.5 yields

YO < y(rA) € y(3B, nvh) =k,

contrary to hypothesis.

More generally, let E be a real Banach space with a group of symmetries G on it,
e.g. B, 81, etc. Llet E denote the set of A c E\{0} such that A is closed in E
and invariant under G, i.e. A e€f and x € A implies gx € A for all g€ G. An index
theory is a mapping i : E » WU{=} such that for all A, B eE,

1° Normalization: If x ¢ FixG, then 1 (U gx) = 1.

2° mMapping property: If f € C(A,B) and f is equivariant, i.e. fg = gf
for all geG, then i(A) < i(B).

3° gubadditivity: 4(A U B) < i(A) + i(B).

4° continuity Property: If A is compact and AN PixG = ¢, then
i(A) < ® and there exists a § > 0 such that 1{Ng(A)) = i(A).

Remark 2.7: If A @FE and AN FPixG ¢# @, 4(A) = 41(E). Indeed if x € AN FixG, the

map f(u) = x, A + {x} is continuous and equivariant so by the mapping property,
1(A) € 1({x}). But 2° with £ = 18 shows i({x}) < 1(A) so equality holds here. Since

A can be replaced by E in this computation, i(A) = i(E).
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Remark 2.8: There are analogues of Proposition 2.5 for wore general index theories. E.g.
if G~8' and i 1is the index theory definec in [10) or [11], 4(S®) = n where S" ia
a 2n - 1 dimensional invariant sphere lying {in E\Pix G. In particular if BE\Fix G is
infinite dimensional and G = 81, combining this observation with Remark 2.7 shows
i(A) =» for any A €[ such that An Pix G ¥y § and 41 4is as in [10,11]).

Several index theories can be found in the literature. The first one introduced was
based on the notion of cateqgory due to Ljusternik and Schnirelman [12]. We have already

1

mentioned the “"geowetrical®™ index theory provided by the notion of genus. An S version

of genus was given by Benci [13]). Cohomological index theories can be found in {10-11]) and
the references cited there.
Now we turn to the use of index theories to obtain multiplicity results for symmetric

1 index

functionals. We will mainly work with genus but will sketch the use of an §
theory for (1.8). Theorem 1.28 is one of the simplest multiple critical point results.
Before proving it, two remarks are needed.

Remark 2.9: The version of the Deformation Theorem given earlier does not suffice for
multiplicity results. Moreover when treating functionalsg on a manifold as in Theorem 1.28,
a variant of the Deformation Theorem more suitable for such a setting is required. The
following result is sufficient for Theorem 1.28, For f : s“" + R, let ;s -
{xes™ ) £(x) <8l. Por ceR set ic =(xes" ' | £(x) =c and £'(x) -
(£°(x),x)x = 0}. Here (°¢,*) denotes inner product.

Theorem 2.10: 1f fec'(R",R) andis even, c € R, and 0 is any symmetric

-1 .n=1
n=1 )

neighborhood of K_ in 8", then there exists a mapping n € C([0,1] x 8" ',8 and

an € > 0 such that

1° nte,x) is odd in  x.

o x 2

2% n(IA_ N0 <A __ . |
° ~ - ~ ~

37 1f A =@, n(VA VA _ ..

1

Remark 2.11: With E = R?, get v, ={A€E | ac s™' and vy(a) » 4},

b
1 < jJ < n. Note the following four properties of the sets Yj’

(1) v #8 1¢3<n.
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(11) Monotonicity property: Y, > Y, 2.4s2 Y .
(111) Invariance property: If ¢ € c(s™ ',8""') and i. (14, ana A e vy
then ¢(r) e Yj.
(iv) BExcision property: If A € \f and Bef with Y(B) < s < j, then
A e Yyma®
Indeed property (i) follows from Proposition 2.5 with 2 = 83"1, 1< J<n, (41) is
trivial, (i1ii) is a consequence of 2° of Propostion 2.3 and (iv) follows from Remark 2.4.
Proof of Theorem 1.28: Define

cj-inf max £(x) , 1€ j<n .,
AeYj:eA

By property (i1i), € Sy sl cp We claim <y is a critical value of 'l,n"" This
fact in itself is not sufficient to prove the Theorem since possibly c’ LIRY L c,,p for

p > t and there is only one pair of critical points corresponding to this degenerate
critical value. However we further claim if Cy Seee™ Cyyp $ ¢, then Y(§c) > pti.
Remark 2.4 then shows there are infinitely many critical points corresponding to c. It
suffices to verify the second claim since it contains the first. Suppose Y(ic) € p. Then
by 4° of Proposition 2.3, there is a § > 0 such that f(ls(ic)) < p and by 2° of
Proposition 2.3, if N = gk ) o 8™, Y(R) € p. By Theorem 2.10 with 0 = N, there

n-1 ni)

exists an n € c((0,1] x 8 with n(1,°) odd and € > 0 guch that

(2.12) n(‘l,nen\u) c A‘__e .
Ae t
Choose Y”_p so tha

(2.13) max £ € cte .
A

Then by (iv) of Remark 2.11, AN € Y, and by (iii) of the same result,

3

B EN(ILAN) € Yj- Consequently by (2.12) - (2.13),

c-cj<-;x£<cj-e v
a contradiction.
There are generalizations of Theorem 1.28 to infinite dimensional settings due to

Ljusternik (5], Browder [14), Berger [15), Amann [16], and many others. These abstract
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nf'.‘ theorems have then been applied to obtain existence of multiple solutions of nonlinear
partial differential equations. Due to lack of time we will not be able to go into more
e
;:3: detail here but turn instead to a symmetric version of the Mountain Pass Theorem. A
* A
‘:-' somevhat more general result than that stated in Theorem 1.29 will be treated next.
. %
it Theorem 2.14: Let E be an infinite dimensional Banach space, and let I € C‘(B,R) be
. even and satisfy (PS) and I(0) = 0. Suppose E =V © X where V ig finite dimensional
2 and I satisfies
oY .
", (I}) There are constants p, @ > 0 such that I|,. .. >a,
: ‘ ~ p ~
(Ii) For all finite dimeansional subspaces E c E, there exists R(E) such
e that I<0 on BB _ .
'f'@ R(E)
}.‘ Then I possesses an unbounded sequence of critical values.
5
' There is also a finite dimensional version of Theorem 2.12 which is proved in a
e o similar but simpler fashion. The proof of Theorem 2.14 follows the same pattern as that of
o
R " Theorem 1.28. First we need to supplement the statement of the Deformation Theorem with
SN
»
,‘? the fact that if I is even, then n(1,*) can be taken to be odd and if 0 is any
] symmetric neighborhood of K., then n can be chosen to satisfy "“"‘c«fc\O) S A, o To
W
.,'.t continue, a class of sets, T 3 will be introduced. These sets possess properties like
e o™
‘;\ those verified for Yy 3 in Remark 2.11. Miniwaxing I over T j the produces the critical
v
’n’, values cj of I. Lastly one additional argument shows the cj form an unbounded
sequence.
\
‘ To begin the proof, suppose V is k dimensional and V = lpan{c,,...,qk}. For
s . ]
t 4 ® > k, inductively choose e ., ¢ cpan{e1,...,en} 2 E,. Set R = R(E)) and D, =
» ¥
BR. n E,. Define
N (2.15) Gy,={hec( ,E) | h is 0dd and h =14 on | "B} .
'\J n
~
N Then Gy # § since id € G,. Set
¥y I'j = {h(Dm\Y) im>» 3, he Gy YO E, vy(¥) € m=9} .,
~ Proposition 2.16: The sets Pj possess the following properties:
l‘ °
XY 1 rjf! for all j e nm.
N
LY
o
.?1‘ -12-~
5
N
)
9%
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2 (Monotonicity): "3+1 < I‘j.
3° (Invariance): If ¢ € C(E,E) 1s odd and ¢ = id on B, N E for
»n
all mew, then ¢ : T +T for all jemw.

3 b
© (Excision): 1t BeTl, z€E, and Y(3) <& <) then Nz e Fyegr
Proof: The proof is straightforward but tedious and will be omitted.
Now we define

(2.17) ’ cy=inf maxItu) , JeW .
BEer, uves

3
By 2° of Proposition 2.16, C44q > C4o In order to show that cy is a critical value of
I, a lower bound for ) is required. The following intersection theorem leads to such
an estimate.
Proposition 2.18: If 3 > k = dim V and ner’, then Bn Xn 3!,#'.
Proof: Let BeT, so B= R(D\Y) where m> 3 and Y(Y) < m=3. The definition of
R, implies I(u) <0 if u e 'l\'lt. and I >a on alp nX by (I.‘). Bince = > Xk,
X N D, ¥ ¢. Therefore R, > p. Set 6-{:90- | hix) enp} and let 0 be the

component of O containing O. 8ince h is odd and h = 14 on s, n &, 0 is a
symmetric bounded neighborhood of O in E,. By Proposition 2.5, 1(:0) =m Set W=
{xep_ | nix) e anp). If xe 30, then h(x) € 33,. Therefors Y(W) > Y(30) = m by 2°
of Proposition 2.3. By Remark 2.4, Y(W\Y) > m = (==3) = 3 > k. Hencs Y(R(W\Y)) > k by
2° of Proposition 2.3. Consequently the definition of W and Proposition 2.6 show
3, > h(AY) A X # #. But B> h(NY). Therefore BN XN 3B # f.
Remark 2.19: An inspection of the above proof shows the stronger conclusion
Yy(BN Xn anp) > j=k holds.

Now the lower bound for cy mentioned above can be obtained.
Corollary 2.20: If J > k, cj > a.
Proof: This is immediate from Proposition 2.18, (I;), and the definition of UL

The next result shows e, is a critical value of I for j > k and also gives a

multiplicity statement for “"degenerate” critical values.

"mitim 2.21: It j >k and Cj - Cj*1 ®yo o™ cj+P H C, then Y(xc) > F"o

-13=
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Proof: By Corollary 2.20, c > a> 0. Since I(0) =0, 0 & K, and K. e&E Moreover (ps)

implies K. is compact. If Y(K.) < p, by 4° of Proposition 2.3, there is a & > 0 such
that Y(lc(lc)) < p. The stronger version of the Deformation Theorem mentioned above
with 0= -B(xe) anda € = % yields the existence of an ¢ @ (o,E) and

nec({o,1] xg,E) with n(1,*) odd such that

(2.22) n(i,xcﬂ:\o) € Ae
Choose B € l’j’p such that
(2.23) max I € cte .

B

By 4° of Proposition 2.16, Q = MO e T,. Moreover by 3° of Proposition 2.16, our choice
of ¢, and 1° of the Deformation Theorem, n(1,0) e l'j. Therefore (2.21) = (2.22) show

c< max I< e ,
n(1,Q)

a contradiction.

The final step in the proof of Theorem 2.14 is given by
Proposition 2.24: ej *® ag J+ .
Proof. We use a variant of the argument of Proposition 2.21. It was observed earlier that
c’ﬂ > <y for all j € N. If the sequence ‘cj’ 18 bounded, ey +ccm, If cy =-c
for all large Jj, Y(K_) == via Proposition 2.21. But (PS) implies K_ is compact so
Y(K_) < by 4° of P:opoutim 2.3. Thus ¢ > cy for all j. Let ¢
K -c{u eE lc ., < Xu) < c and I'(u) = 0}). Again applying (PS) and 4° of Proposition
2.3, we see K 1is compact and there is a §> 0 and g€ W such that
Y(K) = q = Y(uy5(K)). Invoking the Deformation Theorem with ( = Ng(K) and €c=c- %
yields ¢ e (0,e) and n(1,+) € c((0,1] x E,E) with n(1,*) odd and

(2.25) n(,Aa, \0) cA_ .
cte c-€

Choose j € W such that cy > c-c and B € Fyeq satisfying

(2.26) max I € ;'ﬂ: .
B

By the argument of Proposition 2.21, n(1,ﬁ) e l‘j. Therefore

< max I G cme < ey
ﬂ(‘cﬁ)

°y
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The proof of Theorem 2.14 is now complete. The earliest version of this theorem can
be found in (1] where applications were also given to a class of "superlinear® elliptic
partial 4ifferential equations of the form (1.2). A more general such application will be
sketched next. Consider
(2.27) -Au = p(x,u), x€Q ;3 us=20, x€
vhere 8 < 2 isa bounded domain with a smooth boundary. The function p is assumed to
satisfy the following conditions:

(py) pec(dxrm

(pg) IPX,E)] € oy + aJEI® where 1 <o <22 ana n>2 .

(py) 0 <cuPx,E) Ep f& ptx,t)ar < £ p(x,E) for |E| large

(pg) pPi(x,§) is 044 in &.

Theorem 2.28. If p satisfies (py) - (pg), (2.27) possesses an unbounded sequence of weak
solutions.

Remark 2.29. If (pg) is slightly strengthened, e.g. to p(x,f) is locally

B3lder continuous, then this comndition together with (p,;) imply weak solutions of (2.27)

are classical solutions. If n = 1 or 2, (p;) can be considerably weakened.

Proof of Theorem 2.28; Set

1w = [ 19a1? - pix,u)rax
for uelil;'z(m where as norm on E we take

tul = (Ia |v“|3¢,)'4

8ince critical points of I are weak solutions of (2.27), the result is immediate if I
satisfies the hypotheses of Theorem 2.14. It is clear that I(0) = 0 and (pg) shows I
is even. mnypotheses (py) and (p;) imply that I & c'(l,l) and (py) = (p3) imply that (PS)
is satisfied. See e.g. [1] for the details hers. To check (t;), integrating (p3) shows

there are constants aj, a4 ? 0 such that

18-
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X (2.30) P(x,£) > aglElY - a,
) for all £ @ R. Therefore

g;( 1 2 "
z (2.31) I(u) ¢ 19(5 Pal€ - 13|“| +a,)ax
vl for all u € E. In particular for u € E, a finite dimensional subspace of E, the
W4t
Y lul¥  term in (2.31) dominates as u + ® since U > 2. Thus (2.31) guarantees the
s existence of R(E) in (Ii).
:. To verify (I}), B must be decomposed into V @ X. Choose V = span{vy, ... v)
'v',:.’*. vhere k 1is free for the moment. The functions v4 are the eigenfunctions of
N

(2.32) -Av= )v, x € ; vs=0, xe€23Q
_"; normalized by Ivl = 1 and ordered by increasing magnituds of the correspomd-ing
#,? eigenvalues. Set X = vl. the orthogonal complement of V and consider I|” nx: M
L) [
f_.ﬁs (py), for ue aap,

1.2 _ s+1

(2.33) I(w) > xp fn“s"" + ag)ax
';" for soms constants ag and age By the Gagliardo-Wirenberg inequality (17],
g }‘
é" (2.34) ol < .7|u|’|u|"’
% L (R) L ()
¢ wvhere

1 1 4 ) *

. — —-—- ) ¢ - .
i e T B(2 n) (1-8) 3
-C.u If u € X, we have the elementary estimate
j-:!
§ (2.35) Ak”lulzz < 1
i L)

where lj denotes the jﬂ' eigenvalue of (2.32)., Substituting (2.33) - (2.34)
5
¥, into (2.32) yields
N _ (1=B)(a+1)
n (2.36) 1w > o203 - ag A, S

for u €3, X. Choose p =p(k) so that the ters in parenthesis equals Va, t.e.
‘.- . (1-B;(c+1) .1
e pik) = (g— AL, )
O 8
1\; and
= (2.37) Iu) > 2o - a
) . 4 (<] 9 .
2 H 2
Q'\ Since A, *® as k+® p(k) +® as k » e Choose k such that plk)” > 8ay .
3
" -16-
33'}1‘; '

e

A e s
N

t
)
!

A

5':]'4 L » "’.f - .1. 'o‘. ..- -',,‘. ., o

Ky (:“ . 2’ "..""":'w.::\\': o~
~, ! ( A ) \’ P

LIt}




_ n
Boin T T =

.3,
e

)

Therefore 1I(u) > i- o(k)z a and (!5) holds. The sketch of the proof of Theorem 2.28

is complete.

The multiplicity theoresms presented thus far are in a $; setting. Analogous results
can be obtained vhen the sysmetry group is l' with applications to second order and
general Namiltonian systems. In the remainder of this u;:tion we will briefly sketch some
such extensions in the setting of (1.8). Thus consider
(2.38) z=3n () .

When N grows at a "superquadratic® rate as is| * », thare is an analogue of Theorem
2.28 for the corresponding functiomal
(2.39) I(s) = [J(peq - m(x))ae .
A complete treatment can be found in {18]. We will ocutline the result emphasiszing its
relationship with the previous case.

2,40; If mec (", R) and there exists ¥ > 2 such that
(my) 0 <uN(z) ¢ s°B  for all large Isl
then for each T > 0, (2.38) possesses a sequence of T periodic solutions which is
unbounded in L .
Proof: Por convenience set T = 2v. A natural space in which to treat the first term in
Ha) 1e B3 022", e milbert space of 2n-tuples of 2v periodic functions
which possess a square integrable "derivative” of order -;- However the second term,
/3% B(2)8t need not be defined on E since ve have not imposed any growth restrictions
on R. This creates a technical problem which one can gat around by truncating H so that
the new functional belongs to c‘(l.l) and via (Ry) satisfies (PS). We will ignore this
point and suppose I in (2.39) is continuously differentiable on E and satisfies (PS).
See [18] for a precise treatment of the technicalities indicated above.

The space E can be decomposed into E' @ 22 0 5 where ¥ are respectively the
subspaces of E on which A 1is positive definite and negative definite and !o ~ lz" is
the set of 2n-tuples of constants. Any z € E can be written as sz = et 4 zo +z" ezt
0+ E.. In an appropriate basis for E, which is easy to write down,

Alg) = [:" peqae = 1z112 - 127% ,
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The eigenvectors in l’, E- of A occur in pairs due to the s! symmetry. Ordering thea

by the magnitude of the corresponding eigenvalue, let
0

L, - span{1®t 2 eigenvectors in '} e’ ex” .
Our assumption on H and the form of I shows there exists an R, > 0 such that
I(u) € 0 if uCl’.-!‘.. Thus as in the proof of Theoream 2.14, set D--Bp‘n L, and
G, = (h e cip,,R)Ih satisties (1) - (1i1)}
where
(1) h is equivariant,

0
(1) h = 14 on “‘R nx._)ut,

»
(111) P™h = B(z)s” + ¥(=z) ,

P~ being the orthogonal projector of E onto B, Y compact, and B € c(n_,u,il) vhere
i depends on H.

The sets G, are more complicated than tho.ir counterparts in Theores 2.14 due to two
factors: (a) The anologue of V in Theorem 2.14 is a subspace of the form L, for some
m and this is infinite dimensional in ocontrast to the earlier setting; (b) Pix s = P
whereas Pix %, = {0}. we require h|,° = jd due to (b) and (1ii) is needed because of
(a).

Note that id @ G, forall me W s0o G, ¥ §. As earlier set

Ty = (h(DXY) | m> 3, heG, YeEE LN < wy)
where 1 refers to an 8' index theory mentioned earlier such as can be found in (10] or
[11). Then the sets Pj possess the properties given in Proposition 2.16 and minimex
values °j can be defined as in (2.17). Moreover there is an analogue of the intersection
theoresm, Proposition 2.18.
Proposition 2.41; If BeT, and p <Ry, B0 2B N L., #% . If Ly, were finite
dimensional, the proof of Proposition 2.18 and an 8! version of the Borsuk-Ulam Theores
would suffice to get the result. 8ince L,,, is infinite dimensional, a more complicated
argument is required using a finite dimensional approximation argument and Property (1ii)

of G, to aid in passing to a limit. See [18]) for the details.
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The remaining steps in the proof are to show (A) for large 3, cy is a critical value
o of I, (B) ey = I(lj) *e as zy e vhere 2y is a critical point of I corresponding
¢ -
Iy to cy, and (C) l:jl «*® as j * =, step (C) follows from (B). Indeed since
13y L
\E‘ I'(lj) =0 ” (l)’
N c, = e) = [T g, o B (2,) - nz, e .
3 3 0 'T% " T 3
;:3 Thus if the functions 24 were uniformly bounded in I-.. the numbers ¢y would be
' bounded, contrary to (B). Steps (A) and (B) are obtained with the aid of a comparison
problem. A function MN(|z]) is constructed which satisfies M(|z|) > H(z) for all =z e
o, Therefore
B Is) > 3(e) = [37(peq - M(x))ae
5 and
1 e,)bjsi.nf max J(u) .
Del'j ues
g B.9. if H satisfies a polynomial growth condition, H(z) € l,lll' + a5, we can take
N M(x) = ayx® + a;. Purther restrictions on the choice of M allow us to show
‘ .
‘ b’ +® ag j+ = thus verifying (B). Lastly (A) follows for large j by a version of
' the Deformation Theorem for I which shows n € G, for ail m @ W. For the details,
., consult (18].
» The ideas sketched above and in fact the above theorem can be used to study the
" existence of periodic solutions of (1.8) on a prescribed energy surface as was mentioned in
¥ (1.10) = (1.11). As a quick example of such a result, we have
Y] Theogem 2.42 [19): Suppose H € c'®@®™,m) and 8= (s €8 | B(z) = 1} 15 a manifold
\!
>, and bounds a compact starshaped region. Then (2.38) has a periodic solution on 8.
-— Proof: Define a new Hamiltonian H(s) as follows: Since 8 bounds a compact starshaped
region, for any :el"'. 2 ¥ 0, there is a unique w(z) €8 and f(s) > 0 such that
g = fw. It is easy to ses that sec'. is homogeneous of degree 1, and fB(z) = 1 iff
se€8., Set H(0) =0 and W(s) = l(:)‘ for = ¥ 0. Then 'iec' and is homogeneous of
- degree 4. Since $ is a manifold and 8 = H-'(1) = H (1), thers is an a(s) # 0 such
;_;' that
.,
] -19-
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,5., (2.43) H (z) = a(z)H_(2)

for all z € S. This fact implies any solution of (2.38) on 8 is a reparametrization of

}- a solution of
e (2.44) z~JH(2)
ietd * y
it on S. Our above remarks about H imply it satisfies (H,) of Theorem 2.40. Hence with

e.g. T = 2%, by Theorem 2.40, (2.44) has a solution (t) such that (Z(t)) _ > 1. Now
L
T wmay not be on S. However by the homogeneity of H, we can choose &8 > 0 such that

;(6!:) = 1, Moreover &7 satisfies

(2.45) 8% = & JH, (L) = 8725 w80y

Therefore after a changes of time scale, 6§ will satisfy (2.44) and the proof is complete.

.
KN

Remark 2.46. Using the ideas of Theorem 2.40 in a more direct fashion, one can prove the

,‘{

existence of multiple solutions of (2.37) on 8 provided that 8 satisfies further

geometrical conditions, thereby obtaining results of Ekeland-Lasry [(19] and generalizations

]
.

thereof due to Berestycki-Lasry-Mancini-Ruf [20].

7
o

-,‘,
I i e [ )
227"

)

v

I

At

-20- 1

- e

\):\‘ \:,s

A v ~-I'"' Y’ f\':" o ."\l.'-l"" O

\
N~ NN N ""‘

e \".

i \’.



on L DTR RGeS XNXNEX

P

| ke

RS+ VP 2P

L% Y

Theozrem 3.4: Supposes f € I.z(ﬂ) and p satisfies (py) - (pg) with s further restricted

3. JPerturbations from symmetry
In this final section some results on perturbation from symmetry will be discussed in

the setting of Theorem 2.28. Consider
(3.1) -Au = p(x,u), x€0Q; u=0, x €23
vhere @ and p are as in Theorem 2.2F. Therefore (3.1) possesses an unbounded sequence
of weak solutions. Suppose (3.1) is perturbed by adding an inhomogeneous term:
(3.2) -Au = p(x,u) ¢+ f(x), x€Q; u=0, xea .
The right hand side of (3.2) is no longer an odd function of u and
(3.3) I(u) = Ia 19012 - P(x,0) - £(x)w)ax
is no longer even on R ¥ I (0)- Thus the machinery used in the proof of Theorem 2.28
does not apply directly to this situation.

The perturbed problem (3.2) was first treated independently by Bahri and Berestycki
[21] and by Struve ([22). Later somevhat more general studies were made by Dong and Li (28]
and this author [24]. All of these papers show (3.2) still possesses an unbounded sequence
of weak solutions provided that s in (p,) is further restricted. Recently Bahri ([25] has
proved under less general hypotheses but without any restriction on s beyond (py) that
(3.2) has an unbounded sequence of weak solutions for almost all f (in e.g. t2@)).
Whether such a generic restriction is necessary remains an interesting open guestion.

In this section, following [24), we will outline how the ideas used in Theorems 2.14

and 2.28 together with some new tricks yleld

by

(3.5) g z {nt2)=(n=2)s , u_

n(s-1) u=1

Then (3.2) possesses an unbounded sequence of weak solutions.

The solutions of (3.2) will be obtained as critical points of I as defined in
(3.3). However there is a technical problem in working directly with I since our
argument requires an estimate on its deviation from symmetry (i.e. I(u) - I(=-u)) that

I itself does not satisfy. Therefore a modified functional J will be introduced for

~21=
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which the appropriate estimate can be obtained and large critical values of which are also
critical values of I.

To motivate the modified problem, a priori bounds for critical points of I will be
obtained in terms of the corresponding critical value. Note that by (p;) there are
constants a3, a8, & > 0 such that

1 u
- + +
(3.6) ” (§ pix,£) 03) > P(x,E) a, > aSIEl
for all Ee@R. If u is a critical point of I, by (3.6)
1 1 1
Iu) = I(u) = 3 I'(uu > (3 = ) gluplx,u) + aj)ax

(3.7)

1
- = f£l ful - a
2 2y i

Using (3.6) again and the H8lder and Young inequalities, (3.7) easily leads to the a priori
bound:
(3.8) [o(Px,m) + 8 0ax < ay(X(w? + 112
for a critical point in terms of the corresponding critical value. A bound for ful in
terms of I(u) now can be obtained from (3.8), (3.6), and the weak form of (3.1) but (3.8)
suffices for our later purposes.
A modified functional can now be defined as follows: Choose X € C (R,R) such that
x(t) =1 for £< 1, x(t) =0 for t > 2, and -2<x' <0 for te (1,2). For uee,
cet Q(w) = 2013w} + 112 ana
vtu) = x@) " (pix,u) + adax) .
Pinally set
(3.9) 3w = [oid 1%ul? - pix,u) - Bluf(xiulax .
The following proposition contains the properties of J that will be needed for what
follows.
Proposition 3.10: If p satisfies (py) - (p,), f € 12(2) and ¢ is as above, then
1) Jeckzmw.
(11) There is a constant M > 0 such that if J(u) > M and J'(u) = 0, then J(u) =
I(u) and I'(u) = O,

(111) There is a constant M, > M such that J satisfies (PS) relative to
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{fuex | J() > H,} (i.e. any sequence (uj) such that J(uj) > Mg, J(uj) is bounded

from above, and J"(uj) +0 as j + @ is precompact).

(iv) There is a constant 81 depending on Ifl 2 such that for all u eE,
L (Q)
1

(3.11) 13¢u) = J(=u)}| < B (1TWY + 1)

The proofs of these statements can be found in (24]. To prove Theorem 3.4, by (v) of
Proposition 3.10, it suffices to produce an unbounded sequence of critical values of J.
To do so, we begin by defining functions (vj) via (2.32). Let lj - lpnn{v1,...,vj} and
l]j' its orthogonal complement. Replacing I by J in (2.35) and arguing as earlier shows
there is an n:’ = R(Bj) such that J(u) < 0 if u e ‘j and ful > Rj. Let Dj =
‘Rj n lj and Gj be as defined in (2.15). Pinally define

(3.12) bj-inf max J(h(u)) , jem .

heGj \x!l)j

These numbers cannot be expected to be critical values of I or J unless £ = 0.

However we have

Proposition 3.13: There exist constants 82 >0 and k € W (depending on |f|L2(m)
such that for all k > k,

(3.14) b >8, k¥

wvhere £ was defined in (3.5).

Proof: The argument follows the same lines as (2.33) - (2.37) with the further observation
[26) that

A, > const. j2/n

3

for large j. Hence we omit the details.
The minimax values bj will be used for comparison purposes shortly to aid in
producing critical values of J. Let

Uy 2 {fu=tvy, +vlte(0Ry,,], wes, nE, and lul Ryt

§+1
and

Ay E {ne c(uj,:) | H‘Dj ec, and H(u) =u if u e 3B, v (B, \B)n :j)} .

J+1 j+1 3

A new set of minimax values, c4y, can now be defined:

23~
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(N Ol (3.15) cy = inf max J(H{u)) jew .
. Hez\j ueuj
A o Proposition 3.16: 1If <y > bj > My, s e (O,cj-bj),
(o Ay(8) = (R eny | JH()) € by +§ for ueDy
“b and
cj(s) £ inf max J(H(u)) ,
AY ueaj(s) uer
2N
_;'% then c,(8) is a critical value of J.
LA
Ly
‘;_: Proof. Since Aj(s) c Aj' cj(c) > ¢::l > bj. Suppose <4 is not a critical value of J.
Let € = — (cj bj-ﬁ)- Then by the Deformation Theorem, there is an n € C([0,1] x E,E)
: and € > 0 as earlier. In particular n(1,u) = u 4if 1I(u) € [cj(G) - -e-. cj(G) +€l.
o
:.l Choose H e Aj(d) such that
5 . . max J(H(u)) € c,(8) +¢ .
e - . ue‘j j
1,:.{ Therefore
> .
o (3.17) max J(n(1,H(u))) € c,(8) - ¢ . i
> b | ‘
ueu k
by K\ 3
. We claim & = n(1,H(+)) e Aj(6). Certainly ¢ e C(Uj,l). Moreover since a'Dj e Gj and
J(H(u)) < by + § < cy8) - € by our choice of €, n(1,H(u)) = H(u) for u eDy via 1°
"-_":: of the Deformation Theorem. Siwilarly n(1,H(u)) = H(u) =u 4f u e aan u
e 3+1
AS
5 ((Bg Bp, N Ej). Therefore ¢ € A,(S8). But then
1 341 Ry 3
X (3.18) cj(ﬁ) < max J(I(u)) ,
L uevy
-‘._1 contrary to (3.17). |
'_',:: Completion of proof of Theorem 3.4: Since bj + o ag j + e, by Proposition 3.13, if we
‘-' \J
.?'::‘ show cy > bj for some subsequence of j's tending to infinity, then Theorem 3.4 follows
] - from Proposition 3.16. We will prove
~
. *
'-P.:-; Proposition 3.19: 1If cy = bj for all j » jJ , there is a constant ® guch that
_.3':::-; 1
NNy u=
S (3.20) by < w) .
- Comparing (3.14) to (3.20) and recalling (3.5) then shows cy = bj for all large j 1is
AP
s :;: impossible. Hence Theorem 3.4 follows
sl'\' _
N
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Proof of Proposition 3.19: For 3 2 j' and € > 0, choose HE€ § such that

(3.21) max J(H(u)) < l:»j + € .

uet!j

The function B can be extended to Djﬂ so that it is odd and continuous. Moreover this

extension belongs to Gy,y. Hence

(3.22) b < max J(H(u)) .
j+1
“‘°3+1

But Dyyq = Uy (<Uy) and by (3.21) and (iv) of Proposition (3.10),

1
(3.23) max J(H(w)) € b, +€ + 8. (b, + ) + 1) .
-0 3 )
3
Combining (3.21) = (3.23) and using the fact that € is arbitrary yields
1
u
(3.24) bjﬂ < bj + B,(hj + 1)

for all 3 > j.. A straightforward induction argument then gives (3.21) and the proof is

complete.
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